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Research Article 
 

The unappreciated role of intent in algorithmic moderation 
of abusive content on social media 
 
A significant body of research is dedicated to developing language models that can detect various types of 
online abuse, for example, hate speech, cyberbullying. However, there is a disconnect between platform 
policies, which often consider the author's intention as a criterion for content moderation, and the current 
capabilities of detection models, which typically lack efforts to capture intent. This paper examines the role 
of intent in the moderation of abusive content. Specifically, we review state-of-the-art detection models 
and benchmark training datasets to assess their ability to capture intent. We propose changes to the 
design and development of automated detection and moderation systems to improve alignment with 
ethical and policy conceptualizations of these abuses. 
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Research questions  
• What role does intent play in existing social media policies for abuse moderation? 
• What is the current state of annotating and detecting common forms of online abuse, focusing 

on hate speech and cyberbullying? 
• How can intent be incorporated into existing annotation, detection, and moderation pipelines to 

align with content moderation policies? 
 

Essay summary  
• As social media platforms work to balance free expression with the prevention of harm and abuse, 

user intent is often cited in platform policies as a determinant of appropriate action. However, we 
surveyed recent scholarly research and found that the role of intent is underappreciated or, often, 
wholly ignored during the annotation, detection, and in-practice moderation of online abuse. 

• Capturing users’ intent from their text is an exceptionally hard problem. It is hard for a human 
reader to understand the intent of an author; it is even more challenging for an algorithm to do 
the same. Despite advancements in NLP, today’s state-of-the-art approaches cannot reliably infer 
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user intent from short text, particularly if not provided with sufficient context. We highlight the 
features and metadata considered by existing algorithms, their prevalence, and their plausible 
impacts on understanding intent. Based on our findings, we put forth recommendations for the 
design of abuse detection and mitigation frameworks that include 1) robust training datasets 
annotated with context that reflect the complexities of intent, 2) state-of-the-art detection 
models that use contextual information as input and provide explanations as output, 3) 
moderation systems that combine automated detection with wisdom of the crowd to 
accommodate evolving social norms, and 4) friction-focused platform designs that both offer 
users opportunities to reflect on their intent before sharing and generate useful data regarding 
user intent. 

 

Implications  
 
Substantial interdisciplinary literature seeks to define, detect, measure, and model different types of 
abusive content online. Industry efforts to moderate abusive content at scale rely heavily on automated, 
algorithmic systems. These systems routinely fail (in terms of both false positives and false negatives). 
This paper explains why and proposes a series of potential improvements.  

The basic argument is straightforward. Whether or not content is abusive, according to most platform 
policies and legal definitions, depends on the state of mind of a human being, usually the speaker.  Yet 
algorithmic systems that process content (e.g., the speaker's words) are unable to reliably determine a 
person's state of mind. More and different kinds of information are needed. 

The term abuse spans a spectrum of harmful language, including generalized hate speech and specific 
offenses such as sexism and racism. Definitions of different types of abuse often intersect and lack precise 
boundaries.  Later, we consider various definitions and taxonomies proposed to describe abusive content.  

Common to most definitions of digital abuse is some notion of intent (e.g., French et al., 2023; 
Hashemi, 2021; Molina et al., 2021; Vidgen & Derczynski, 2020). Intent is a subjective state of mind 
attributable to an actual person, typically the speaker, poster, or sharer. In cognitive science, ethics, law, 
and philosophy, intent is a contested and complicated concept. As Frischmann & Selinger (2018) explain: 
 

Intention is a mental state that is part belief, part desire, and part value. My intention to do 
something—say to write th[is] explanatory text... or to eat an apple—entails (1) beliefs about the 
action, (2) desire to act, and (3) some sense of value attributable to the act (p. 364). 

 
In pragmatic ethical and legal contexts, the focus often turns to evidence of intent. For example, a written 
signature is considered an objective manifestation that a person intends to enter into a contract 
(Frischmann & Vardi, 2024). Thus, by including intent in definitions of abusive content, the implicit 
challenge is divining subjective state of mind from evidence manifested in the content itself and the 
surrounding context.  

While we focus on intent as a central element in how platforms define and moderate abuse, we do 
not claim that interpreting intent is the only or universally preferred approach. Some frameworks 
prioritize observable harms or outcomes, especially in contexts like mis- and disinformation (Mirza et al., 
2023; Scheuerman et al., 2021). Our aim is not to displace these frameworks but to critically assess the 
feasibility and implications of relying on intent when it is embedded in platform policy and annotation 
practices. 

Unsurprisingly, intent is exceedingly difficult to capture algorithmically through analysis of short text 
(Gao & Huang, 2017; MacAvaney et al., 2019; Wang et al., 2020). ToxicBERT (Hanu & Unitary team, 2020), 
for example, can label sentences as hateful or toxic but lacks the ability to interpret context in the input 
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(MacAvaney et al., 2019; Wang et al., 2020). ToxicBERT flags the sentence “I'm going to kill you if you 
leave the dishes for me again” as toxic and threatening; it fails to differentiate between literal and 
figurative language. Supervised algorithms like ToxicBERT rely on curated, typically human-annotated 
training datasets. However, the complexities of intent are eventually reduced to simple class labels—such 
as hate speech or not hate speech. The underlying assumption of this approach is that human annotators 
are furnished with adequate contextual information to make these judgements.  

In this paper, we survey the landscape of the online abuse moderation policies of major social media 
platforms. We examine existing taxonomies of online abuse and survey existing algorithms for abuse 
detection. We focus on hate speech and bullying due to their prevalence, but our work can and should be 
extended to other content categories for which intent is relevant, including mis-/disinformation (Kruger 
et al., 2024). We examine the training datasets underlying these algorithms and the role (if any) of intent 
during dataset annotation. Finally, we survey the set of features extracted from training datasets and used 
for algorithm development. These features reflect the varied context available to algorithmic content 
moderation systems. Our findings motivate a set of recommendations to better align abuse detection 
algorithms with platform policies (see Figure 1).  
 

 
Figure 1. Recommendations to better capture intent. 

 
Recommendation: Annotation—Introduce context and intent during dataset annotation 
 
Dataset curators must recognize social, cultural, and other contextual variations present in natural 
language, and design annotation tasks sensitive to and mindful of these differences. Moreover, dataset 
curators must provide sufficient context to annotators to permit accurate assessment of intent, in 
particular (Anuchitanukul & Ive, 2022). Examples of such context include conversation threads between 
initiators and targets, user history and metadata, or norms defined by the specific platform. We propose 
a combined codebook-datasheet in the form of a structured set of questions for dataset curators and 
annotators to consider prior to annotation—particularly for online abuse datasets. This framework 
integrates annotation-specific guidance (codebook) with dataset-level context (datasheet). The full set of 
questions is in Appendix A. Responses to these questions should be made transparent and explicit to all 
stakeholders prior to annotation. The structure of this framework is informed by qualitative approaches 
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that treat annotation as an interpretive task shaped by context and ambiguity, rather than a purely 
objective labeling (Charmaz, 2006). By encouraging dataset curators and annotators to reflect on 
definitions, contextual cues, and the relationships between initiators and targets, the Codebook-
Datasheet promotes more consistent and intent-sensitive annotation practices. 
 
Challenge: Trade-offs between capturing intent and achieving high annotation agreement 
 
A primary challenge in enhancing the annotation phase with contextual details is the trade-off between 
accurately inferring an individual's intent reflected through content and maintaining high agreement 
among annotators (Ross et al., 2017). Context can be subjective, and different annotators might interpret 
the same information differently based on their backgrounds, experiences, and biases (Joseph et al., 2017; 
Lynn et al., 2019). Providing more context also raises concerns about privacy, annotator fatigue, and task 
scalability. On the other hand, annotator disagreements are sometimes due to lack of sufficient context 
(Zhang et al., 2023). In cases where intent is ambiguous, omitting context may lead to systematic 
mislabeling or overly reductive interpretations of the content. Consequently, establishing standardized 
guidelines that incorporate diverse perspectives is essential to mitigate this concern and improve 
annotation consistency. 

 
Recommendation: Detection—Develop context-aware, policy-aware, explainable models 
 
Incorporation of contextual features into detection algorithms can substantially improve the accuracy of 
intent-based abuse detection (Markov & Daelemans, 2022; Menini et al., 2021). Recent progress in NLP, 
such as the introduction of retrieval-augmented generation (RAG) for large language models (Li et al., 
2024), supports access to relevant contextual information from knowledge bases—for example, a user's 
past interactions—in real-time (Shi et al., 2024). Unlike earlier methods that rely on fixed input windows 
or static embeddings of prior conversations, RAG retrieves the most semantically relevant context 
dynamically, enabling more targeted and interpretable use of prior information. This may be especially 
beneficial for platforms aiming to implement context-aware moderation policies that adapt to dynamic 
social norms. Likewise, state-of-the-art large language models (LLMs) are more effective at executing rule-
based moderation (Kumar et al., 2023); platform policies can be retrieved as context and used directly 
during the algorithmic decision process. Importantly, advances in explainable AI (XAI) should help users 
and developers understand model outputs (Islam et al., 2023; Kohli & Devi, 2023). Examples of XAI 
techniques include LIME, SHAP, and attention heatmaps, which help explain why a model flagged a post 
as abusive (Muhammadiah et al., 2025). These tools can help moderators identify whether 
misclassifications stem from sarcasm, missing context, or ambiguous language—factors especially 
relevant when intent is at the core. XAI can be used, for example, to pinpoint why a model might 
misunderstand particular intentions or contexts and ensure compliance with social media moderation 
policies that require explanations of AI-driven decisions. We advocate for the implementation of policy-
aware and dynamic abuse detection, which can be facilitated by XAI and retrieval-augmented models.  
 
Challenge: Balancing performance and applicability 
 
Incorporating contextual features presents a significant challenge, particularly in terms of performance, 
as standard detection models often prove to be overly optimistic (Menini et al., 2021). Ensuring that the 
system achieves high performance without compromising its applicability can be difficult; thus, advanced 
machine learning models and continuous algorithm training with updated datasets are required to 
address this balance effectively (Scheuerman et al., 2021). Additionally, integrating XAI methods improves 
transparency, but they may also reduce model efficiency when requiring simplification of underlying 
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architectures (Crook et al., 2023). Thus, designing explainability into systems without sacrificing model 
performance remains an ongoing area of research. 
 
Recommendation: Moderation—Incorporate wisdom of the crowd and establish feedback loops 
 
While algorithmic systems play an essential role in content moderation at scale, they also have limitations. 
Algorithms struggle to process and make sense of the nuance and subtlety of human communication 
(Bender & Koller, 2020). Humans, although generally better at understanding context and intent, can 
exhibit inconsistency and bias (Basile et al., 2022).  

We suggest that moderation can be improved by hybrid approaches, leveraging “wisdom of the 
crowd”—utilizing user reports and community feedback—alongside, and even integrated with, 
algorithmic systems to identify and moderate abusive content (Allen et al., 2021; Pröllochs, 2022). The 
potential effectiveness of crowd-based moderation is evident in several real-world implementations, such 
as Twitter’s Birdwatch (now X’s Community Notes), where users collaboratively add contextual notes to 
potentially harmful or misleading content;2  Reddit’s voting and reporting mechanisms that shape content 
visibility;3  and Wikipedia’s multi-layered editorial and review workflows.4 Additionally, we recommend 
establishing clear pathways for feedback so that moderators can provide insights back to the automated 
detection systems to support iterative improvements, for example, as new labeled training data. 
Throughout these processes, platforms must design moderation systems to be sensitive to evolving 
definitions of inappropriate content and dynamic societal norms across regions and cultures.  
 
Challenge: Managing the scale and the biases inherent in crowd-sourced moderation 
 
The challenge in this phase lies in managing the scale of data and potential biases that can arise from 
crowd-sourced inputs. User reports can be influenced by personal biases or coordinated attacks, leading 
to false positives or negatives (Jhaver et al., 2019). Uneven participation rates mean that moderation 
decisions may disproportionately reflect the views of a narrow group of users. Moreover, the quality of 
crowd input may vary widely depending on task design, interface clarity, and community norms (Gadiraju 
et al., 2015). Implementing robust filtering algorithms to verify and validate user-generated reports before 
they influence the moderation process is crucial for maintaining the integrity of the system. 
 
Recommendation: Design—Introduce friction to generate evidence of intent and enable more intentional 
actions 
 
For the most part, we focus on the detection and evaluation of content flowing through social media 
systems as if the moderation pipeline is designed to operate independently, only triggering governance 
procedures upon detection of content that violates a policy. Of course, the actions of users depend to 
some degree on the affordances of the social media platform itself.  

If we relax the assumption of independence between platform design and content moderation 
pipeline design, a range of friction-in-design (Frischmann & Selinger, 2018; Frischmann & Benesch, 2023) 
measures might generate reliable evidence of intent to better guide content moderation systems. For 
example, platforms might introduce prompts that query users about their intentions when users post or 

 
 
2 See: https://blog.x.com/en_us/topics/product/2021/introducing-birdwatch-a-community-based-approach-to-misinformation; 
https://help.x.com/en/using-x/community-notes 
3 See: https://support.reddithelp.com/hc/en-us/articles/7419626610708-What-are-upvotes-and-downvotes; 
https://support.reddithelp.com/hc/en-us/articles/360058309512-How-do-I-report-a-post-or-comment 
4 See: https://en.wikipedia.org/wiki/Wikipedia:Editing_policy 

https://blog.x.com/en_us/topics/product/2021/introducing-birdwatch-a-community-based-approach-to-misinformation
https://help.x.com/en/using-x/community-notes
https://support.reddithelp.com/hc/en-us/articles/7419626610708-What-are-upvotes-and-downvotes
https://support.reddithelp.com/hc/en-us/articles/360058309512-How-do-I-report-a-post-or-comment
https://en.wikipedia.org/wiki/Wikipedia:Editing_policy
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share (certain types of) content. Such prompts might be triggered based on different criteria, such as 
accuracy, authenticity, or intended audience. The prompt could provide a simple means for the user to 
express their intentions. The prompt might be framed in terms of purpose. Not only would a response 
provide potentially reliable evidence of intent that would be useful for moderation, but it also would 
provide the user with an opportunity to think about their own intentions. Other friction-in-design 
measures could provide users with knowledge about the potential consequences of their actions. Such 
measures would generate another source of reliable evidence about intent. 

Prior research has shown that friction-based interventions—such as prompts during content creation, 
interstitial warnings, limits on message forwarding, and credibility nudges—can reduce misinformation 
sharing, offensive language, and improve user reflection (Clayton et al., 2020; Egelman et al., 2008; Fazio, 
2020; Jahn et al., 2023; Kaiser et al., 2021). These examples underscore that friction can support both 
behavioral change and the elicitation of user intent for moderation purposes. 
 
Challenge: Aligning business models and regulatory frameworks with slow governance for a safe, healthy 
digital environment  
 
The basic idea of the friction-in-design strategy is to focus on the dynamic interactions between the social 
media platform and the content moderation pipeline from a design perspective. The associated challenges 
here are substantively different from the technical challenges we have outlined in prior sections. The 
success of friction-in-design approaches center around platform business models and regulatory 
frameworks that prioritize and reward healthy information ecosystems (Frischmann & Benesch, 2023). 
Frischmann & Sanfilippo (2023) emphasize the need to replace the dominant platform design logic that 
prioritizes frictionless, seamless interactions with one that embraces slow governance. Here, what that 
means is utilizing digital speedbumps not only to slow traffic but also, more importantly, for the 
instrumental functions of generating reliable evidence of intent and affording users the opportunity to be 
more intentional in their online behavior. Yet, as is probably all too obvious, this presents a fundamental 
challenge to existing business models. 
 

Findings  
 
Finding 1: Existing taxonomies of digital abuse are diverse and often ambiguous, making consistent 
categorization difficult. 
 
Extensive literature details the diverse forms of online harm across various digital platforms (e.g., Arora 
et al., 2023; Im et al., 2022; Keipi et al., 2016; Scheuerman et al., 2021). These studies categorize a range 
of abusive speech, with prominent themes including hate speech, cyberbullying, and discrimination (Arora 
et al., 2023; Ghosh et al., 2024; Scheuerman et al., 2021). Each of these harms is consequent to nuanced 
user interactions, which are often platform-specific, culture-sensitive, and context-dependent. Prior work 
has highlighted the differing definitions of online harms in the literature (Fortuna & Nunes, 2018); this 
ambiguity poses challenges for the development of consistent and effective moderation pipelines.  

Various approaches to classifying online abuse emphasize different parameters. Some taxonomies 
highlight the target of abuse—whether directed at individuals, groups, or concepts (Al Mazari, 2013; 
Vidgen et al., 2019; Waseem et al., 2017). Others focus on characteristics of the abuse—whether it is 
explicit or implicit (Mladenović et al., 2021), and still others explore subcategories of abuse or harm 
(Gashroo & Mehrotra, 2022; Lewandowska-Tomaszczyk et al., 2023). An overview of existing taxonomies 
is provided in Appendix B. Our work focuses on intent, which features prominently in platform policies 
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but is often implicit in current taxonomies. For example, intent may be operationalized through the notion 
of targeting. We emphasize two common types of explicit online abuse: hate speech and cyberbullying 
(Wiegand et al., 2019). These forms of abuse have not only received significant attention in natural 
language processing (NLP) but reflect intent—deliberate aim to harm or intimidate specific individuals or 
groups.  To clarify how these categories are typically defined in the literature, we provide the following 
commonly used definitions: 

• Hate speech: speech that attacks or discriminates against a person or group on the basis of 
attributes such as race, religion, ethnic origin, national origin, sex, disability, sexual orientation, 
or gender identity (Brown, 2017; Lepoutre et al., 2023) 

• Cyberbullying: the use of electronic communication technologies like the internet, social media, 
and mobile phones to intentionally harass, threaten, humiliate, or target another person or group 
(Campbell & Bauman, 2018; Wright, 2021) 

 
Finding 2: Platform moderation policies invoke user intent, yet intent is difficult to observe directly. 
 
Intentions are a state of mind. People exercise their autonomy by acting upon their intentions. Most often, 
we rely on external manifestations, such as what people say or do (Frischmann & Selinger, 2018) to learn 
another person’s intent. In content moderation, like other contexts, intent is thus inexorably intertwined 
with actions. When attempting to determine the intent associated with abusive content, one must identify 
the relevant actor(s) and action(s). Notably, content is a sociotechnical artifact with history and context, 
and multiple relevant actors and actions may be involved with its arrival in the platform. Major platforms 
like Twitter (now “X”) and Facebook (now “Meta”) emphasize the importance of intent in content 
moderation. For example, Twitter’s guidelines state (emphasis added):  
 

Violent entities are those that deliberately target humans or essential infrastructure with physical 
violence and/or violent rhetoric as a means to further their cause.  

 
Hateful entities are those that have systematically and intentionally promoted, supported and/or 
advocated for hateful conduct, which includes promoting violence or engaging in targeted 
harassment towards a protected category.5 

 
Instagram also addresses the complexity of moderating hate speech by considering the intent associated 
with the act of sharing. The platform allows content that might be deemed hateful if it is shared to 
challenge or raise awareness about the issues discussed, provided this intent is clearly communicated 
(emphasis added): 
 

It’s never OK to encourage violence or attack anyone based on their race, ethnicity, national 
origin, sex, gender, gender identity, sexual orientation, religious affiliation, disabilities, or 
diseases. When hate speech is being shared to challenge it or to raise awareness, we may allow 
it. In those instances, we ask that you express your intent clearly.6 

 
 
 

 
 
5 See: https://help.Twitter.com/en/rules-and-policies/violent-entities (accessed May 2024).  
6 See: https://help.instagram.com/477434105621119 (accessed May 2024).  

https://help.twitter.com/en/rules-and-policies/violent-entities
https://help.instagram.com/477434105621119
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TikTok describes hate speech as intentional as well (emphasis added): 
 

( ... ) content that intends to or does attack, threaten, incite violence against, or dehumanize an 
individual or group of individuals on the basis of protected attributes like race, religion, gender, 
gender identity, national origin, and more.7 

 
Finding 3: Many publicly available datasets of abusive content lack detailed annotation procedures and do 
not systematically incorporate intent or platform-specific context. 
 
Our review highlights several key challenges to the alignment between platforms' policies around abuse 
and the datasets used to train abuse detection algorithms: 
 

• Ambiguity in definitions of digital abuse: Compounding the diversity of definitions and taxonomies 
of abuse proposed in academic work and discussed above, instructions to annotators are often 
vague. This can result in lack of reusable training data and benchmarks. In Figure 2, we provide 
excerpts describing annotation processes from surveyed papers. While we cannot determine 
whether more comprehensive information was provided to annotators due to limited reporting, 
excerpts alone reveal substantial variability in definitions and instructions. 
 

 
Figure 2. Example of annotation procedure provided in the surveyed papers. 

 
• Inconsistent consideration of intent during annotation: Table 1 shows an excerpt from the dataset 

paper summary (see Appendix D for the full table). Of the dataset papers surveyed, 47.6% (20 of 
42) explicitly mentioned intent during annotation, while 35.7% (15 of 42) provided context to 
annotators to help them better infer intent. In addition, 33.3% (14 of 42) of the papers required 
annotators to identify the target of abuse. Just three papers (Van Hee et al., 2018; Vidgen, 
Nguyen, et al., 2021; Ziems et al., 2020) provided contextual information to annotators, explicitly 

 
 
7 See: https://newsroom.tiktok.com/en-us/countering-hate-on-tiktok (accessed May 2024).  

https://newsroom.tiktok.com/en-us/countering-hate-on-tiktok
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acknowledged the role of intent in annotation guidelines, and requested annotators to identify 
the target of the abuse. 

• Cross-platform differences: Text and annotation instructions are typically provided to annotators 
outside of the platforms from which they were collected. Labels are considered universal, rather 
than tailored to the environments and operational settings of specific social media platforms. 

 
Table 1. Example datasets for social media abuse. 

Reference Source 
Author-

defined scope Content type 
Context 

provided 
Target 

annotation 
Intent 

mentioned 
(Waseem & 
Hovy, 2016) Twitter Hate Speech Text No No No 

(Waseem, 
2016) Twitter Hate Speech Text No No No 

(Golbeck et 
al., 2017) Twitter Online 

Harassment Text No No Yes 

(Chatzakou et 
al., 2017) Twitter Cyberbullying Multimodal Metadata No Yes 

(Gao & 
Huang, 2017) Fox News Hate Speech Text Conversation No No 

(Davidson et 
al., 2017) Twitter Hate Speech Text No No Yes 

(Gao et al., 
2017) Twitter Hate Speech Text No No No 

(Jha & 
Mamidi, 
2017) 

Twitter Sexism Text No No No 

(Van Hee et 
al., 2018) ASKfm Cyberbullying Text Conversation Yes Yes 

(Fersini et al., 
2018) Twitter Misogyny Text No Yes Yes 

 
Finding 4: Current detection algorithms often fail to account for contextual and dynamic aspects of hate 
speech and cyberbullying, limiting their ability to infer intent and generalize across settings. 
 
We prompted GPT-3.5 to classify several statements as abusive or not abusive, both with and without 
contextual cues (see Figure 3). We used GPT-3.5 because it is a widely available, general-purpose language 
model that can respond to contextual prompts, allowing us to observe how variations in context and 
intent may affect classification outcomes. We observe the impact of context and intention on model 
interpretations of each statement. However, many existing models, like those based on BERT, fall short in 
capturing context to infer intent. We evaluated four different models (Barbieri et al., 2020; Das et al., 
2022; Mathew et al., 2021; Vidgen, Thrush, et al., 2021) using the same examples as those tested with 
GPT-3.5. The results (see Figure 3) show inconsistent outputs and a significant reliance on word-level cues, 
failing to account for the underlying user intent that contextualizes meaning.  
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Figure 3. Example of prompts and detection model performance to showcase the importance of context and intent in 

understanding online abuse. 
 
Our context analysis of the papers on online abuse detection algorithms confirmed that while detection 
models have made notable advances in identifying abusive content through analysis of textual data, they 
often fail to consider the complex nature of social media interactions, which include aspects like user 
status, social network structures, and offline context. Figure 4(A) shows the co-occurrence network of ten 
features extracted and used to capture context and infer intent. The size of each node reflects how many 
papers included the corresponding feature, while the width of each edge represents how often two 
features appeared together in the same paper.  We observe that user metadata are the most frequently 
considered features, with 16 (9.5%) algorithms using them for detection. Similarly, linguistic cues are used 
in 14 (8.3%) studies and post metadata in 10 (5.9%). In contrast, psychological and cognitive dimensions, 
and policy or rule-aware models are less frequently explored, with just four (2.2%) and two (1.1%) studies, 
respectively. A majority of reviewed papers, 58.9% (99 of 168), focus on comparing model performance 
and benchmarking against various metrics. Figure 4(B) shows a histogram of papers according to the 
number of intent-related features considered in a paper. Among 168 surveyed papers, three of them 
present models incorporating six out of the ten features listed above, meaningfully including context and 
potentially addressing the issue of intent (Dhingra et al., 2023; López-Vizcaíno et al., 2021; Ziems et al., 
2020). Building upon Ziems et al. (2020), a subsequent paper utilized the dataset from the earlier study 
and applied methodological improvements (Dhingra et al., 2023). 
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Figure 4. (A) Co-occurrence network of features considered by detection models, (B) Distribution of models/papers 

considering contextual features, based on the number of features considered (from 1[min] to 6[max]). 
 
Based on these observations and our review of the literature, we summarized the current limitations of 
detection algorithms for online abuse. 
 

• Insufficient context for inferring intent: Because intent is rarely explicit in language, detecting it 
often requires additional context beyond the text itself. Traditional text-based models, though 
robust in their linguistic analyses, fall short in understanding the complexities of group dynamics 
in the spread of online abuse (Salminen et al., 2018). For instance, an abusive narrative might 
emerge and propagate not merely because of its textual content but due to the influence and 
endorsement of a closely-knit group within the network (Marwick & Lewis, 2017). These group-
based interactions are influenced by, for example, shared ideologies, mutual affiliations, or even 
orchestrated campaigns, which sometimes employ subtle linguistic cues not easily detectable by 
conventional text-based models. The complexity is further compounded when they employ 
tactics like code-switching, euphemisms, or meme-based communication, thereby effectively 
circumventing text-based detection mechanisms. 

• Static perspectives: Social norms are dynamic and influence users’ interpretation of what 
constitutes abusive content (Crandall et al., 2002). Traditional detection models often fail to 
account for these longitudinal shifts. For example, a phrase may take on a new meaning in the 
digital realm, and the rapid evolution of internet slang also necessitates a more flexible approach 
for continuous training and updating. 

• Poor generalizability: Model performance can fluctuate significantly even when utilizing the same 
dataset, with optimal outcomes frequently exclusive to that specific dataset (Leo et al., 2023). 
These inconsistencies highlight the need for robust testing to understand the generalizability of 
existing methods in new contexts. 

 

Methods  
 
Online abuse datasets 
 
We reviewed the documentation provided in the associated papers of existing online abuse detection 
datasets, focusing on any available descriptions of data sources, categories, modality, and annotation 



 
 
 

 The unappreciated role of intent in algorithmic moderation of abusive content on social media 12 
 

 
procedures. We categorize each based on the extent to which it considers the context and intent of 
abusive expressions during annotation. We reviewed papers available between 2016 and 2024 using 
Scopus search along with datasets referenced in Vidgen & Derczynski (2020)8 and citation search. The 
dataset selection and review process involved two researchers. One researcher drafted the initial table, 
and the second independently reviewed the associated papers in detail to identify any discrepancies. No 
inconsistencies were observed during this process. Further details, search terms, inclusion criteria, and a 
PRISMA diagram for the screening pipeline are provided in Appendix C. 

Appendix D outlines papers reviewed, noting whether any contextual information was provided to 
annotators, whether intent was explicitly mentioned in annotation instructions, and whether the 
annotation task included identification of a target person or group. 

• Intent mentioned: We capture whether annotation guidelines mention intent, intention, etc., 
anywhere in instructions or definitions. 

• Context provided: When provided, context takes one of two forms: 1) conversations (annotators 
are provided with conversation/text surrounding the text being annotated, enabling them to infer 
intent by understanding the broader exchange) and 2) metadata (annotators are provided with 
user-level metadata, for example, profile content, geographical location, or post-level metadata, 
for example, images or text extracted from images, which may offer additional clues about intent). 

• Target annotation: Annotation guidelines request that the person or group targeted by a 
comment be identified during annotation. 

 
Online abuse detection algorithms 
 
We reviewed the papers that described and examined abuse detection models, categorized features 
utilized by these models, and identified the gaps that exist in effectively detecting abuse. We queried 
SCOPUS for papers presenting abuse detection algorithms published between 2013 and early 2024. 
Similar to our survey of datasets, specific search terms, inclusion criteria, and a PRISMA diagram for the 
screening pipeline are provided in Appendix C. The review and categorization were also conducted by two 
researchers who cross-checked decisions and engaged in discussion to ensure consistency. No 
inconsistencies were reported during this process. 

We categorized the features used by detection models in our survey that go beyond traditional text-
based methods such as bag-of-words, TF-IDF, and embeddings. These features fall into the following ten 
categories: user metadata, post metadata, image and video content, psychological and cognitive signals, 
conversational context, graph structure, policy- or rule-aware signals, sentiment, topical or thematic 
information, and linguistic cues. Appendix E provides a detailed breakdown and examples for each 
category, and Appendix F includes a full mapping of these features to the corresponding papers in our 
survey. 
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Appendix A: Datasheet codebook for dataset annotation 
 
Regarding information provided to annotators: 

• What are the definitions and scope of online abuse presented to the annotator? 
• What underlying taxonomy is provided, and how should it be applied (e.g., modified, integrated) 

during annotation? 
• What contextual information is provided to annotators to assist in the annotation process? 
• What is the platform's content moderation policy, and does the annotation rubric align with this 

policy? 
• What is the platform's moderation policy for abusive content and does the annotation rubric 

adhere to the policy? 
 
Regarding information solicited from annotators: 

• Is abusive or offensive language present? 
• Is there identifiable intent behind the dissemination of the content, if there is abusive language 

present? 
• Who are the initiators and the targets? 

 
Regarding assessment and reporting: 

• When was the data collected and when was it labeled? 
• Who are the annotators (demographics, etc.)? 
• What is the agreement score amongst annotators? 
• What are the data points with low agreement? What are potential reasons for disagreement? 
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Appendix B: Summary of existing taxonomies 
 

Table B2. Summary of existing taxonomies of digital abuse on social media.  
Reference  Author-defined scope Categories 
(Nocentini et al., 2010) Cyberbullying written-verbal behavior, visual behavior, 

exclusion, impersonation 
(Al Mazari, 2013) Cyberbullying child cyberbullying, cybergrooming, adults 

cyberstalking, workplace cyber-bullying 
(Agrafiotis et al., 2016) Cyber harm physical, psychological, economic, 

reputational, cultural, political 
(Miró-Llinares & Rodríguez-
Sala, 2016) 

Hate speech & violent 
communication 

violent incitement, personal offence, 
discrimination incitement, collective offence 

(Waseem et al., 2017) Online abuse two-fold typology: directed towards a specific 
individual or entity & used towards a 
generalized other; explicit & implicit 

(Salminen et al., 2018) Online hate targets: financial power (corporation, 
wealthy), political issues (terrorism, politics, 
ideology), racism & xenophobia (anti-white, 
anti-black, xenophobia), religion (anti-Islam, 
antisemitic), specific nation(s), specific 
person, media (towards media company, 
other), armed forces (police, military), 
behavior (humanity, other); language: 
accusations, humiliation, swearing, 
promoting violence 

(Anzovino et al., 2018) Misogyny discredit, stereotype and objectification, 
sexual harassment and threats of violence, 
dominance, derailing 

(Vidgen et al., 2019) Online abuse individual-directed abuse, identity-directed 
abuse, concept-directed abuse 

(Vidgen & Derczynski, 2020) Online abuse person-directed abuse, group-directed abuse, 
flagged content, uncivil content, mixed 

(Banko et al., 2020) Online harm hate and harassment (doxxing, identity 
attack, identity misrepresentation, insult, 
sexual aggression, threat of violence), self-
inflicted harm (eating disorder promotion, 
self-harm), ideological harm (extremism, 
terrorism & organized crime, 
misinformation), exploitation (adult sexual 
services, scams, child sexual abuse material) 

(Vidgen, Nguyen, et al., 
2021) 

Online abuse identity-directed abuse (derogation, 
animosity, threatening, glorification, 
dehumanization), affiliation-directed abuse 
(derogation, animosity, threatening, 
glorification, dehumanization), person-
directed abuse (abuse to them, abuse about 
them) 
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Reference  Author-defined scope Categories 
(Sajadi Ansari et al., 2021) Cyberbullying flaming, harassment, sexual, threat, trickery 

 
(Mladenović et al., 2021) Objectionable content 

(cyberbullying) 
fourfold typology: expression (explicit, 
implicit), targeting (targeted, untargeted), 
orientation (directed, generalized), frequency 
(repeated, unrepeated) 

(Alrashidi et al., 2022) Abusive content abusive and offensive language, hate speech, 
cyberbullying, targeted groups (religious and 
racism, gender and misogyny) 

(Gashroo & Mehrotra, 2022) Online abuse abusive language, aggression, cyberbullying, 
insults, personal attacks, provocation, racism, 
sexism, toxicity 

(Lewandowska-Tomaszczyk 
et al., 2023) 

Offensive language taboo (obscene, profane), insulting (abusive), 
hate speech (slur), harassment (cyber-
bullying), toxic 

(Kogilavani et al., 2023) Offensive language aggression, cyberbullying, hate speech, 
offensive language, toxic comments 
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Appendix C: Inclusion criteria and PRISMA diagram 
 
Query for dataset papers 
 
KEY (“social media” AND “dataset” AND (“NLP” OR “Natural Language Processing”) AND (“hate speech” 
OR “abus*” OR “offens*” OR “cyberbully*”)) OR TITLE (“social media” AND “dataset” AND (“hate speech” 
OR “abus*” OR “offens*” OR “cyberbully*”)) AND (LIMIT-TO (LANGUAGE, “English”)) 
 
Inclusion criteria for dataset papers 
 
We applied the following inclusion criteria:   

1) The paper presents a novel dataset for which annotation procedures are described.  
2) The dataset is intended for training and testing algorithm(s) aimed at abuse detection.  
3) The dataset is curated from one or more widely used social media platforms. 
4) The dataset is in English.9  
5) The dataset includes textual content. 

 

 
Figure C1. PRISMA diagram for the selection of papers presenting labeled datasets for online abuse. 

 
 
 
 
 

 
 
9 Focusing on monolingual settings allows us to address these issues directly before extending analyses to multiple languages, 
where cultural variations and linguistic nuances further complicate intent inference. 
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Query for algorithm papers 
 
KEY (“social media” AND (“NLP” OR “Natural Language Processing”) AND “de-taction” AND (“hate speech” 
OR “abus*” OR “offens*” OR “cyberbully*”)) OR TITLE (“social media” AND “detection” AND (“hate 
speech” OR “abus*” OR “offens*” OR “cyberbully*”)) AND (LIMIT-TO (LANGUAGE, “English”)) 
 
Inclusion criteria for algorithm papers 
 
Similar to our survey of datasets, we removed papers that were not accessible, not written in English, or 
which did not describe an algorithm for detection of online abuse. We removed models designed for 
multilingual or non-English tasks. 
 

 
Figure C2. PRISMA diagram for the selection of papers presenting detection algorithms for online abuse. 
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Appendix D: Summary of datasets 
 

Table D3. Summary of datasets for social media abuse. 

Reference Source 
Author-
defined scope 

Content 
type 

Context 
provided 

Target 
annotation 

Intent 
mentioned 

(Waseem & 
Hovy, 2016)  

Twitter Hate speech Text No No No 

(Waseem, 2016) Twitter 
 

Hate speech Text No No No 

(Golbeck et al., 
2017) 

Twitter Online 
harassment 

Text No No Yes 

(Chatzakou et 
al., 2017) 

Twitter Cyberbullying Multimodal Metadata No Yes 

(Gao & Huang, 
2017) 

Fox News Hate speech Text Conversation No No 

(Davidson et al., 
2017) 

Twitter Hate speech Text No No Yes 

(Gao et al., 
2017) 

Twitter Hate speech Text No No No 

(Jha & Mamidi, 
2017) 

Twitter Sexism Text No No No 

(Van Hee et al., 
2018) 

ASKfm Cyberbullying Text Conversation Yes Yes 

(Fersini et al., 
2018) 

Twitter Misogyny Text No Yes Yes 

(Ribeiro et al., 
2018) 

Twitter Hate speech Multimodal Metadata No No 

(ElSherief et al., 
2018) 

Twitter Hate speech Text No Yes No 

(Founta et al., 
2018) 

Twitter Abusive 
behavior 

Multimodal No No Yes 

(Rezvan et al., 
2018) 

Twitter Online 
harassment 

Text No No Yes 

(Salminen et al., 
2018) 

YouTube, 
Facebook 

Online Hate Text No Yes Yes 

(M. Zampieri et 
al., 2019) 

Twitter Offensive 
language 

Text No Yes No 

(J. Qian et al., 
2019) 

Reddit, 
Gab 

Hate speech Text Conversation No No 

(Ousidhoum et 
al., 2019) 

Twitter Hate speech Text No Yes No 

(Basile et al., 
2019) 

Twitter Hate speech Text No Yes No 

(Mandl et al., 
2019) 

Twitter Hate Speech, 
Offensive 
Content 
 

Text No Yes No 
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Reference Source 
Author-
defined scope 

Content 
type 

Context 
provided 

Target 
annotation 

Intent 
mentioned 

(Wijesiriwarden
e et al., 2020) 

Twitter Toxicity Multimodal Conversation No Yes 

(Gomez et al., 
2020) 

Twitter Hate speech Multimodal Metadata No No 

(Vidgen et al., 
2020) 

Twitter Hate speech Text No No Yes 

(Caselli et al., 
2020) 

Twitter Abusive 
language 

Text No No Yes 

(Ziems et al., 
2020) 

Twitter Cyberbullying Text Conversation Yes Yes 

(C. J. Kennedy et 
al., 2020) 

Twitter, 
Reddit, 
YouTube 

Hate speech Text No Yes Yes 

(Aggarwal et al., 
2020) 

Twitter, 
Reddit, 
Formspring 

Cyberbullying Text No No No 

(Suryawanshi et 
al., 2020) 

Kaggle, 
Reddit, 
Facebook, 
Twitter, 
Instagram 

Offensive 
language 

Multimodal Metadata No Yes 

(Van Bruwaene 
et al., 2020) 

Facebook, 
Instagram, 
Twitter, 
Pinterest, 
Tumblr, 
YouTube 

Cyberbullying Text Metadata No Yes 

(Grimminger & 
Klinger, 2021) 

Twitter Hate speech Text No No No 

(Qureshi & 
Sabih, 2021) 

Twitter Hate speech Text No No No 

(Salawu et al., 
2021) 

Twitter Cyberbullying Text No No Yes 

(Samory et al., 
2021) 

Twitter Sexism Text No No No 

(He et al., 2021) Twitter 
 

Hate speech Multimodal No No Yes 

(Vidgen, 
Nguyen, et al., 
2021) 

Reddit Abusive 
language 

Text Conversation Yes Yes 

(Ashraf et al., 
2021) 

YouTube Abusive 
language 

Text Conversation No Yes 

(Mathew et al., 
2021) 

Twitter, 
Gab 

Hate speech Text No Yes No 

(Albanyan & 
Blanco, 2022) 

Twitter Hate speech Text Conversation No No 



  
 
 

 Wang; Koneru; Venkit; Frischmann; Rajtmajer 27 
 

 

   

Reference Source 
Author-
defined scope 

Content 
type 

Context 
provided 

Target 
annotation 

Intent 
mentioned 

(Toraman et al., 
2022) 

Twitter Hate speech Text No No No 

(Thapa et al., 
2022) 

Twitter Hate speech Multimodal Metadata No No 

(B. Kennedy et 
al., 2022) 

Gab Hate speech Text No Yes Yes 

(Albanyan et al., 
2023) 

Twitter Hate speech Text Conversation Yes No 
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Appendix E: Categorization of features considered by the detection 
models 
 
User metadata 
 
 Information about a user or an account, whether the speaker or the target of a potentially abusive 
comment, may help to infer intentionality or harm. For example, certain words might be acceptable 
among some users, whereas the same words could be considered abusive when used by others. Likewise, 
patterns of behavior can be indicative of intent, for example, users who repeatedly engage in abusive 
behavior may be more intentional. This can be operationalized through characterization of the history of 
a user's activities (Dadvar et al., 2013). More standardized user-level metadata, such as the geographical 
location of the user and the follower-following statistics of the message sender, have been shown to 
correlate with the occurrence of abusive content and are integrated as features in detection models 
(Bozyiğit et al., 2021). 
 
Post metadata 
 
 Most social media platforms attach metadata to each post, for example, engagement metrics, mentions, 
and hashtags. These can reflect the broader context of a message. For instance, high engagement levels 
(likes, shares, comments) might indicate the popularity of (or controversy around) a post, while particular 
mentions and hashtags can indicate relevance to specific communities or ongoing discussions.  
Suhas Bharadwaj et al. (2022) incorporate hashtags and emojis as distinct features separate from the main 
text content. Bozyiğit et al. (2021) integrate post-level metadata, such as the number of retweets or 
mentions, to improve the performance of these models for detection of cyberbullying. 
 
Image and video data 
 
Many platforms have evolved to include a variety of media formats. Recognizing this, some researchers 
have extended their focus beyond text to include images and videos (Nisha & Jebathangam, 2022; Qiu et 
al., 2022). The additional context that visual and audio elements can provide may improve the detection 
of abusive content.  
 
Psychological and cognitive features 
 
Patterns of language may reflect personality, emotional states, and psychological traits (C. Alonso & 
Romero, 2017). Understanding the psychological and cognitive dimensions of users' behavior is 
particularly critical for understanding intent. Balakrishnan et al. (2020) incorporate multidimensional 
personality traits as features for cyber-aggression detection models.  
 
Conversations 
 
The conversation thread and previous interactions can offer useful context around potentially abusive 
language and provide evidence of intent. Ziems et al. (2020) incorporated features such as timeline 
similarity and mentions overlap based on shared conversations between the author and the target. 
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Graph structure 
 
The relationships and interactions within social networks—such as who users connect with, how they 
interact with these connections, and the nature of the communities they are part of—can offer clues 
about users' intent. For instance, users embedded in tight networks may adopt similar communication 
patterns, which could be innocuous or abusive depending on norms of that group. Authors have 
incorporated network centrality measures for detection of cyberbullying (V. K. Singh et al., 2016). 
 
Policy or rule-aware models 
 
Norms within various online communities can shape what is viewed as inappropriate (Chandrasekharan 
et al., 2018). Policy or rule-aware models aim to ensure that automated systems adhere to guidelines and 
standards. The approach is particularly effective in environments where regulations may vary significantly, 
for example, across cultural contexts. D. Kumar et al. (2023) conducted prompt engineering to incorporate 
large language models into content moderation by including rules within the prompts. Calabrese et al. 
(2022) proposed a representation of moderation policies tailored for machine interpretation and 
illustrated how techniques from intent classification and slot filling can be applied to detect abusive 
content. 
 
Sentiment 
 
Sentiment analysis is a valuable component of many detection models. Sentiment features provide 
insights into the emotional tone of language which might not be apparent through baseline text analysis 
(Geetha et al., 2021). 
 
Topics and themes 
 
Topic modeling techniques, such as Latent Dirichlet Allocation (LDA) (Blei et al., 2003) or theme 
categorization (Perera & Fernando, 2021), allow detection models to understand the subject matter of 
discussions. Models can learn whether certain topics are more likely to involve harmful language or 
cyberbullying. Murshed et al. (2023) employed a clustering-based topic modeling technique to improve 
the accuracy of cyberbullying detection. Perera & Fernando (2021) measured frequency of 
themes/categories associated with cyberbullying, for example, racist, sexual, and physical, to improve 
detection.  
 
Linguistic cues 
 
Words and phrases that are associated with offensive or abusive language are commonly used for abuse 
detection. This includes explicit language, slurs, and aggressive or threatening terms. Common 
approaches include constructing personalized dictionaries and using Linguistic Inquiry and Word Count 
(LIWC) for feature extraction (Geetha et al., 2021). Since TF-IDF and bag-of-words approaches are 
standard practices in NLP, we do not categorize them as nuanced uses of linguistic cues. 
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Appendix F: Detection paper categorization 
 
User metadata 
 
Al-Garadi et al., 2016; Balakrishnan et al., 2020; Bozyiğit et al., 2021; Cheng et al., 2019b; Dadvar et al., 
2013, 2014; Dhingra et al., 2023; Escalante et al., 2017; Y. Liu et al., 2019; López-Vizcaíno et al., 2021; 
Nagar et al., 2022; Nisha & Jebathangam, 2022; W. Qian et al., 2023; Qiu et al., 2022; Sajadi Ansari et al., 
2021; Ziems et al., 2020 
 
Post metadata 
  
Babaeianjelodar et al., 2022; Balakrishnan et al., 2020; Bozyiğit et al., 2021; Dhingra et al., 2023; Geetha 
et al., 2021; Y. Liu et al., 2019; López-Vizcaíno et al., 2021; Nisha & Jebathangam, 2022; Suhas Bharadwaj 
et al., 2022; Ziems et al., 2020 
 
Image and video data 
 
Cheng et al., 2019b; López-Vizcaíno et al., 2021; Nisha & Jebathangam, 2022; Qiu et al., 2022; N. M. Singh 
& Sharma, 2024; V. K. Singh et al., 2017; Thapa et al., 2022; Wang, Xiong, et al., 2020 
 
Psychological and cognitive features 
 
Al-Garadi et al., 2016; Balakrishnan et al., 2020; Cheng et al., 2019a 
 
Features from conversations 
 
Ashraf et al., 2021; H.-Y. Chen & Li, 2020; Dhingra et al., 2023; Nisha & Jebathangam, 2022; W. Qian et al., 
2023; Ziems et al., 2020 
 
Graph structure 
 
Cécillon et al., 2021; Cheng et al., 2019a, 2019b; Dhingra et al., 2023; Q. Huang et al., 2014; Y. Liu et al., 
2019; Nagar et al., 2022; Qiu et al., 2022; V. K. Singh et al., 2016; Ziems et al., 2020 
 
Policy or rule-aware models 
 
Calabrese et al., 2022; D. Kumar et al., 2023 
 
Sentiment features 
 
Babaeianjelodar et al., 2022; Dhingra et al., 2023; Geetha et al., 2021; Y. Liu et al., 2019; López-Vizcaíno 
et al., 2021; Nisha & Jebathangam, 2022; Perera & Fernando, 2021; Ziems et al., 2020 
 
Topics and themes 
 
López-Vizcaíno et al., 2021; Murshed et al., 2023; Perera & Fernando, 2021; Van Hee et al., 2018 
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Linguistic cues 
 
Babaeianjelodar et al., 2022; Cheng et al., 2019a, 2019b; Dadvar et al., 2013; Dhingra et al., 2023; Geetha 
et al., 2021; Z. Li & Shimada, 2022; Y. Liu et al., 2019; López-Vizcaíno et al., 2021; Perera & Fernando, 2021; 
Sajadi Ansari et al., 2021; Van Hee et al., 2018; N. Zampieri et al., 2021; Ziems et al., 2020 
 
Model evaluation, improvement and application 
 
Abro et al., 2020; Aggarwal et al., 2020; Agnes et al., 2023; Ahmed et al., 2021, 2022; Aind et al., 2020; 
Akinyemi et al., 2023; Alksasbeh et al., 2021; P. Alonso et al., 2019, 2020; Alotaibi et al., 2021; Anjum & 
Katarya, 2022; Antypas & Camacho-Collados, 2023; Awal et al., 2021; Baydogan & Alatas, 2021, 2022; 
Beddiar et al., 2021, p. 24; Bhagya & Deepthi, 2021; Bokolo & Liu, 2023; Buan & Ramachandra, 2020; 
Bunde, 2021; Chandrasekaran et al., 2022; Chelmis & Zois, 2021; H. Chen et al., 2017, 2018; Daniel et al., 
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