
 

 

 

   

 
Harvard Kennedy School Misinformation Review1  

January 2022, Volume 3, Issue 1 

Creative Commons Attribution 4.0 International (CC BY 4.0) 

Reprints and permissions: misinforeview@hks.harvard.edu  

DOI: https://doi.org/10.37016/mr-2020-91 

Website: misinforeview.hks.harvard.edu 
 

 

Research Note 

 

Research note: Tiplines to uncover misinformation on 
encrypted platforms: A case study of the 2019 Indian 
general election on WhatsApp 
 
There is currently no easy way to discover potentially problematic content on WhatsApp and other end-to-
end encrypted platforms at scale. In this paper, we analyze the usefulness of a crowd-sourced tipline 
through which users can submit content (“tips”) that they want fact-checked. We compared the tips sent 
to a WhatsApp tipline run during the 2019 Indian general election with the messages circulating in large, 
public groups on WhatsApp and other social media platforms during the same period. We found that 
tiplines are a very useful lens into WhatsApp conversations: a significant fraction of messages and images 
sent to the tipline match with the content being shared on public WhatsApp groups and other social media. 
Our analysis also shows that tiplines cover the most popular content well, and a majority of such content 
is often shared to the tipline before appearing in large, public WhatsApp groups. Overall, our findings 
suggest tiplines can be an effective source for discovering potentially misleading content. 
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Research questions 
• How effective are tiplines for identifying potentially misleading content on encrypted social media 

platforms? 

• What content is submitted to tiplines for fact-checking? 
 

Essay summary 
• A tipline is a dedicated service to which messages (“tips”) can be submitted by users. On 

WhatsApp, a tipline would be a phone number to which WhatsApp users can forward information 
they see in order to have it evaluated by fact checkers. 

 

 
1 A publication of the Shorenstein Center on Media, Politics and Public Policy at Harvard University, John F. Kennedy School of 

Government. 
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• Using state-of-the-art text and image matching techniques, we compared content sent to the 
tipline to the content collected from a large-scale crawl of public WhatsApp groups (these are 
WhatsApp groups where the link to join is shared openly), ShareChat (a popular image sharing 
platform in India similar to Instagram), and fact checks published during the same time in order 
to understand the overlap between these sources. 

• The tipline covers a significant portion of popular content: 67% of images and 23% of text 
messages shared more than 100 times in public WhatsApp groups appeared on the tipline. 

• We found that a majority of the viral content spreading on WhatsApp public groups and on 
ShareChat was shared on the WhatsApp tipline before appearing in the public groups or on 
ShareChat. 

• Compared to content by popular fact-checking organizations, the messages from tiplines cover a 
much higher proportion of WhatsApp public group messages. We suspect this is because fact-
checking organizations typically fact-check content primarily based on signals from open social 
media platforms like Facebook and Twitter, whereas the tipline is a crowdsourced collection of 
content native to WhatsApp. 

 

Implications 
 
Platforms such as WhatsApp that offer end-to-end encrypted messaging face challenges in applying 
existing content moderation methodologies. End-to-end encryption does not allow the platform owner 
to view content. Rather, only the sender and recipients have access to the content—unless it is flagged by 
a receiving user (Elkind et al., 2021). Even though WhatsApp is extremely popular, used by over 2 billion 
users all over the world, there is currently no large-scale way to understand and debunk misinformation 
spreading on the platform. Given the real-life consequences of misinformation (Arun, 2019) and the 
increasing number of end-to-end encrypted platforms, developing tools to understand and uncover 
misinformation on these platforms is a pressing concern. 

One potential solution is to make use of misinformation “tiplines” to identify potentially misleading 
or otherwise problematic content (Meedan, 2020). A tipline is a dedicated service to which “tips” can be 
submitted by users. On WhatsApp, a tipline would be a phone number to which WhatsApp users can 
forward potential misinformation they see in order to have it fact-checked. We call the messages sent by 
users “tips.”  

While our paper is, to the best of our knowledge, the first peer-reviewed study on WhatsApp tiplines, 
tiplines are quite common in practice. WhatsApp, for instance, currently lists 54 fact-checking 
organizations with accounts on its platform.2 Other efforts include the Comprova project3 and 
FactsFirstPH,4 an initiative of over 100 organizations uniting around the 2022 Philippine presidential 
election. Tiplines are similar to features on platforms such as Twitter and Facebook that allow users to 
flag potential misinformation for review, but tiplines are operated by third parties and can provide 
instantaneous results for already fact-checked claims (Kazemi et al., 2021). 

In this study, we used data from a WhatsApp tipline that ran during the 2019 Indian general election 
as part of the Checkpoint project.5 Checkpoint was a research project led by PROTO6 and Pop-Up 

 

 
2 https://web.archive.org/web/20211130214745/https://faq.whatsapp.com/general/ifcn-fact-checking-organizations-on-

whatsapp/?lang=en  
3 https://firstdraftnews.org/tackling/comprova/  
4 https://factsfirst.ph/ 
5 https://www.checkpoint.pro.to/ 
6 PROTO is an Indian organization that describes itself as, “a social enterprise that is trying to achieve better outcomes in civic 

media through collaboration and research” (https://www.pro.to/about/index.html). 

https://web.archive.org/web/20211130214745/https:/faq.whatsapp.com/general/ifcn-fact-checking-organizations-on-whatsapp/?lang=en
https://web.archive.org/web/20211130214745/https:/faq.whatsapp.com/general/ifcn-fact-checking-organizations-on-whatsapp/?lang=en
https://firstdraftnews.org/tackling/comprova/
https://factsfirst.ph/
https://www.checkpoint.pro.to/
https://www.pro.to/about/index.html
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Newsroom, technically assisted by WhatsApp.7 The goal of this project was to study the misinformation 
phenomenon at scale—natively in WhatsApp—during the Indian general election. The tipline was 
advertised in the national and international press during the election (e.g., Lomas, 2019). There was an 
advertising campaign on Facebook, but no specific call to action was present in WhatsApp itself. Table 1 
presents some examples of text messages submitted to the tipline. The goal of this article is to understand 
what content is submitted, analyze how effective tiplines can be for discovering content to fact-check, 
and shed light on the otherwise black-box nature of content spreading on WhatsApp. 
 

Table 1. Examples of English text messages forwarded to the WhatsApp tipline to be fact-checked.  

UNESCO Declare India’s “Jana Gana Mana” the World’s Best National Anthem 

When you reach poling booth and find that your name is not in voter list, just show your Aadhar card 
or voter ID and ask for “challenge vote” under section 49A and cast your vote. If you find that 
someone has already cast your vote, then ask for “tender vote” and cast your vote. If any polling 
booth records more than 14% tender votes, repolling will be conducted in such poling booth. Please 
share this very important message with maximum groups and friends as everyone should aware of 
their right to vote. 

Happened today on 47 street (Diamond Market) New York $100,000 given away in ref to Modi victory 
.. see how this millionaire Indian is doing .. 

Coal India is on the verge of ruin! 85,000 crore loss due to Modi! <url> 
Note: Grammar and spelling errors are in the originals. The content we analyzed includes messages in multiple languages 

and formats (e.g., text, images, and links).  
 
Our results show the effectiveness of tiplines in content discovery for fact-checking on encrypted 
platforms. We show that: 
 

1. A majority of the viral content spreading on WhatsApp public groups and on ShareChat was 
shared on the WhatsApp tipline first, which is important as early identification of misinformation 
is an essential element of an effective fact-checking pipeline given how quickly rumors can spread 
(Vosoughi et al., 2018). 

2. The tipline covers a significant portion of popular content: 67% of images and 23% of text 
messages shared more than 100 times in public WhatsApp groups appeared on the tipline. 

3. Compared to content from popular fact-checking organizations, the messages sent to tiplines 
cover a much higher proportion of WhatsApp public group messages. While misinformation often 
flows between platforms (Resende et al., 2019), this suggests that tiplines can capture unique 
content within WhatsApp that is not surfaced by fact-checking efforts relying on platforms 
without end-to-end encryption. 
 

These insights demonstrate tiplines can be an effective privacy-preserving, opt-in solution to identify 
potentially misleading information for fact-checking on WhatsApp and other end-to-end encrypted 
platforms. At the same time, there is the possibility of malicious uses and attacks on tiplines that may 
negatively affect fact checkers, share personal information from others, or poison the dataset. As we 
discuss in the findings, it is necessary to filter spam and other low-quality submissions. We analyzed 
submissions qualitatively to identify those with a claim that could be fact-checked, but there are several 
machine-learning approaches in development for this task (e.g., Hassan et al., 2015; Shaar et al., 2021). 

 

 
7 Pop-Up Newsroom is a joint project of Meedan and Fathm that designs and leads global election and event monitoring journalism 

efforts. 
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Tiplines, like systems for content moderation, must prioritize fact checkers’ mental health (Lo, 2020). The 
Meedan software used in the Checkpoint project, for instance, now uses Google’s SafeSearch API to place 
a content screen over potentially explicit images. Similar systems, however, are needed to protect fact 
checkers from vicarious trauma as well as personal attacks in audio, video, and text in the myriad 
languages in which fact checkers operate. We can further reduce harm and malicious activity by designing 
friction into tiplines such as menu systems and limits on the number of requests per user to prevent denial 
of service attacks. We are currently investigating the data governance and safeguards needed to share 
tipline data more widely with academics for research (Meedan, 2021).  

In addition to the general public, we see three main stakeholders who could benefit from this 
research: academics, fact-checking organizations, and social media companies. Researchers or journalists 
trying to use data from encrypted social media apps like WhatsApp could make use of data from such 
tiplines to study WhatsApp. The current model for identifying and fact-checking viral content on 
WhatsApp is to monitor conversations in a convenience sample of public WhatsApp groups (Garimella & 
Eckles, 2020; Melo et al., 2019). However, this requires technical skill and is resource intensive to manage. 
To our knowledge, monitoring of public groups has occurred only in academic settings. 

Another solution that fact-checking organizations follow is to monitor non-encrypted social media 
platforms such as Facebook or Twitter and assume that content viral on one of these platforms likely 
overlaps with viral content on other platforms. Our work shows that there are far more matches between 
tipline content and public group messages on WhatsApp than between public group messages and either 
published fact checks or open social media content. This notable difference in the coverage of WhatsApp 
public groups stresses the opportunity tiplines provide for identifying misinformation on encrypted 
platforms. Although the volume of messages sent to the tipline is only 10% the volume of messages in the 
public groups, our analysis shows that tiplines can effectively help discover the most viral content being 
shared in the public groups. As end-to-end encryption prevents other forms of monitoring, identifying the 
most popular content on an end-to-end encrypted platform is useful to fact checkers, even if only a subset 
of that content is actual misinformation. The data we have for analysis does not include the fact-checks 
for the content submitted to the tipline, but our analysis shows that the majority of content submitted to 
the tipline contains claims that can be fact-checked. 

Further research is needed to determine the best way fact checkers can prioritize content submitted 
to tiplines, filter spam and low-quality materials, combine signals from other platforms (e.g., from 
CrowdTangle and/or Twitter), and study the impact of fact-checks distributed via tiplines. Some methods, 
such as claim extraction (Hassan et al., 2015; Shaar et al., 2021) and claim matching (Kazemi et al., 2021; 
Shaar et al., 2020), are directly applicable to tiplines, while other aspects require further work. Our 
analysis shows content is often submitted to tiplines before spreading in larger groups; however, this is 
only one step of the fact-checking progress. To be effective, we need systems that help fact checkers 
prioritize content for fact-checking, respond to that content, and disseminate fact-checks before the 
problematic content spreads widely. Nakov et al. (2021) provide an overview of many ways in which 
further research and tool development could assist human fact checkers, and nearly all of these are 
applicable to tiplines as well. Our data predates the introduction of the “frequently-forwarded” flag on 
WhatsApp, but a report from Spanish fact-checking organization Maldita.es suggests this flag can be very 
useful for prioritizing content from WhatsApp tiplines (Maldita.es, 2021).  

Our analysis also found that most users sending content to the tipline were motivated to have the 
content they sent fact-checked: users would often follow up on content they submitted if it had not yet 
been fact-checked. We are unaware of any successful tiplines run solely as research projects, which 
suggests that fact-checking organizations and academics will need to partner together to scale tiplines 
and create meaningful tipline experiences for users. This will involve setup costs and take time to foster 
dedicated contributors who are willing to forward potentially misleading content to a tipline. 
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It’s worth noting that the tipline, public group, and fact-check content we studied were drawn from a 
specific period of time around a large political event (the 2019 Indian general election). It is unclear how 
the dynamics would differ for a less eventful time period. Several always-on WhatsApp misinformation 
tiplines were launched in December 2019, and the number has grown since. We encourage researchers 
to support civil society organizations running these tiplines, as they represent a valuable way to better 
understand the dynamics of misinformation on such end-to-end encrypted platforms. 

Tiplines can also be used to collect hashes of popular misleading or hateful content. Hashes are small 
‘signatures’ or ‘fingerprints’ that do not contain the original content but can be used to identify very 
similar content. Hashes can thus be used to develop on-device solutions that work in encrypted settings. 
For instance, Reis et al. (2020) examine images and propose an on-device approach to alerting users to 
content that has been fact-checked on WhatsApp. Their solution focuses on PDQ hashes for images and 
requires a list of hashes for known pieces of misinformation. Our analysis in this paper suggests that 
tiplines could be a successful way to populate such a list. The most popular images are likely to be 
submitted to a tipline, and, even better, they are very likely to be submitted to the tipline before they are 
widely shared within public groups. Thus, if a list was populated based on images sent to tiplines, it might 
identify many these shares. 

Using advances in the state-of-the-art techniques to find similar image and text messages, an on-
device fact-checking solution could identify up to 40% of the shares of potential misinformation in public 
WhatsApp groups while preserving end-to-end encryption if content can be prioritized appropriately and 
responded to quickly. Such a solution could operate similar to personal antivirus software where 
individuals can choose from a variety of vendors and fully control what happens when a potential match 
is identified. 

 

Findings 
 
Finding 1: Tiplines capture content quickly; popular content often appears in tiplines before appearing in 
public groups. 
 
We examined the effectiveness of tiplines in three ways: speed (i.e., how quickly new content appears in 
tiplines), overlap with content in public groups, and volume. We began with speed and first examined 
how long it took for an item to be shared by someone to the tipline. The intuition behind this is that one 
facet of an effective solution is its ability to identify potential misleading content quickly before it spreads 
widely. 

Figure 1 shows the time difference between an image being shared on a public group and the tipline. 
Negative values on the x-axis indicate that the content was shared in a public group first. We see that 
roughly 50% of all the content was shared in public groups first, with around 10% of content going back 
to over a month. However, if we focus on the subset of the top-10% most shared images within the public 
groups, the distribution looks very different. We clearly see that a majority of the content (around 80%) 
was shared on the tipline before being shared in the public groups, indicating that the tipline does a good 
job covering the most-shared content quickly. Similar trends exist for images on ShareChat (Figure 2). In 
fact, images sent to the tipline have significantly more shares (41 vs. 29) and likes (51 vs. 40) on ShareChat 
compared to images not sent to the tipline (p < 0.01 for a t-test of means). 
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Figure 1. Time difference between the sharing of images on public groups and the tipline. Approximately 50% of the images 

were shared on public groups first. However, if we consider just the top 10% most shared images in the public groups, they were 
mostly shared first on the tipline. (Negative values on the x-axis represent items being shared in the public groups before being 

shared on the tipline.) 

 

 
Figure 2. Time difference for images shared on ShareChat and the tipline. The most popular content was more likely to be 

shared on the tipline first compared to all content. 

 
Comparing the text messages within the public groups to the tipline messages leads to similar results 
(Figure 3). To make this comparison, we first clustered all text messages in the public groups and, 
separately, in the tipline. This comparison only uses the text messages from the tipline within clusters 
having at least five unique messages that were annotated as having claims that could be fact-checked to 
avoid the risk of matching spam or less meaningful content. We again find that the most shared content 
was often shared to the tipline before spreading widely within the public groups. Similar trends also exist 
for URLs (Figure 3, green and red lines). 
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Figure 3. Time difference between the sharing of text messages and URLs in the WhatsApp tipline and public groups. 

 
These findings suggest that content submitted to the tipline may have been circulating person-to-person 
or in smaller, private groups not in our data before the content was submitted to the tipline or appeared 
in the large, public groups in our data. Popular content on non-encrypted social media platforms often 
spreads quickly through large broadcast events (Bright, 2016; Goel et al., 2015); such broadcast events 
may be rarer on WhatsApp, however, due to the limits on message forwarding and the size of groups.8 

 
Finding 2: Tiplines capture a meaningful percentage of content shared in public groups.  
 
A second facet of effectiveness is content overlap: for tiplines to be an effective source of content for fact-
checking, we would want them to identify content spreading in other sources of data, including WhatsApp 
public groups, fact checks, and open social media platforms. We first examined the coverage and 
computed the number of shares for images in the public groups or on ShareChat and computed what 
percentage of the images with different numbers of shares appear in the tipline dataset. Figures 4 & 5 
show the results. For both the public groups and ShareChat, we used logarithmic bucketing of the number 
of shares of items to estimate message popularity. The results show tiplines have good coverage of 
popular content: 67% of the images shared more than 100 times in the public groups were also submitted 
to the tipline. We repeated the analysis with text messages and found that 23% of text messages shared 
more than 100 times in the public groups were also submitted to the tipline (Figure 6). To put matters 
into perspective, we conducted a similar experiment matching all the fact-checked text claims and their 
corresponding social media posts from the same time period against WhatsApp public groups messages. 
Only 10% (12/119) of textual content from popular clusters in public groups (shared more than 100 times) 
matched with at least one text (claim or fact-checked tweet) from Indian fact-checks during this period. 
 

 

 
8 At the time of writing, WhatsApp limits groups to a maximum of 256 people and allows messages to be forwarded to a 

maximum of five groups at once. If a message has been forwarded at least five times, it can only be forwarded to one additional 

group at a time. Further details are at https://faq.whatsapp.com/kaios/chats/how-to-create-a-group/?lang=en and 

https://faq.whatsapp.com/general/chats/about-forwarding-limits/?lang=en  

https://faq.whatsapp.com/kaios/chats/how-to-create-a-group/?lang=en
https://faq.whatsapp.com/general/chats/about-forwarding-limits/?lang=en
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Figure 4. Coverage of images. The x-axis shows the number of shares on the public groups and the y-axis shows the percentage 
of images with x shares that match with an image submitted to the tipline. Images that are highly shared on the public groups 

are much more likely to be shared to the tipline. 

 

 
Figure 5. Coverage. Similar to Figure 4, images shared more often on ShareChat are more likely to appear in the tipline. 

 
Figure 6. Coverage of text messages. The x-axis shows the number of shares on the public groups and the y-axis shows the 
percentage of text messages with x shares that match with a text message submitted to the tipline. Text messages that are 
highly shared on the public groups are much more likely to be shared to the tipline. Messages in the public groups are first 

clustered together to determine the number of shares of each message. 
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Exact copies of about 10% of popular URLs (i.e., URLs shared over 1,000 times) on public groups were also 
submitted to the tipline. Because of shortened URLs, content takedowns, and the 2-year time difference 
between data collection and analysis, grouping URLs was very challenging. We therefore limited further 
analysis of URLs for this research question. 

We found many text messages and images submitted to the tipline did not appear in the public 
groups, which suggests tiplines also capture content being distributed in WhatsApp in smaller-group or 
person-to-person settings. Out of the 23,597 unique clusters of images submitted to the tipline, only 5,811 
clusters (25%) had at least one match with an image from the public groups. 

Next, we checked which text messages from the clusters with claims matched messages found in the 
public group data. We found that 93% of the 257 relevant clusters match at least one message in the 
WhatsApp public group dataset. Far from being a skewed result where only few large clusters match, we 
found a large number of messages across clusters of all sizes match at least one public group message. 
The per-cluster average of tipline messages matching to the public group data is 91%. This suggests that 
if we had included clusters with fewer than five unique messages, we may have seen additional matches. 
We did not include these, as we only wanted to include messages we knew had fact-checkable claims (and 
we only annotated clusters with at least five unique messages). Additional annotation would likely yield 
more relevant messages and matches. 

Seven percent of the text clusters with fact-checkable claims from the tipline did not match any public 
group messages. This implies that collecting messages from public groups and using tiplines can be 
complementary even though neither is a full sample of what is circulating on WhatsApp. 

Finally, we measured the potential impact tiplines could have on preventing the spread of 
misinformation. For this, we looked at items that were shared on both the tipline and in the public groups. 
We identified the timestamp when an item was first shared on the tipline and counted the number of 
shares of the item on the public groups before and after this timestamp. The intuition here is that if an 
item was shared on the tipline, it is in the pipeline to be fact-checked. We found that 38.9% of the image 
shares and 32% of the text message shares in public groups were after the items were submitted to the 
tipline. 
 
Finding 3: Tiplines capture diverse content, and a large percentage of this content contains claims that 
can be fact-checked.  
 
To investigate the third research question, we took an in-depth look into images, text messages, and links 
sent to the tipline, and here we present examples of the most popular submissions. 
 
Images 
 
The tipline received 34,655 unique images, which clustered into 23,597 groups. Figure 7 shows the three 
most submitted images to the tipline. Each of these three images was submitted by at least 60 unique 
users. All three of these images were fact-checked and found to be false. Figure 7a shows a ‘leaked’ 
government circular alleging a terrorist plot during the elections. This was in fact an old circular taken out 
of context. Figure 7b falsely alleges that Pakistani flags were raised during a political rally, and Figure 7c 
shows doctored screenshots of a TV news program. 
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 (a) (b) (c) 

Figure 7. The most shared images on the tipline. 
 

We constructed a visual summary of all the unique images sent to the tipline, as shown in Figure 8. The 
mosaic shows various categories of images sent to the tipline at a high level. As we move from the top left 
to the bottom right, we can see a lot of images on the top left of Figure 8 containing pictures of 
newspapers, and in general images with text. As we go to the bottom left, we see memes and pictures 
containing quotes of politicians, and on the bottom right, images of people/politicians. Pictures of 
newspapers or images with text on them are the most dominant type, constituting over 40% of the 
content, followed by memes which make up roughly 35% of the content. 

 

 
Figure 8. A visual summary of the images submitted to the tipline. The mosaic is a collection of 20 clusters obtained from the 

34k images submitted to the tipline. Each cluster is represented as 2x2 grid of images randomly sampled from the cluster. 
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Text messages 
 
Of the 88,662 text messages sent to the tipline, 37,823 are unique (not exact duplicates). We further 
organized the messages by clustering them using the Indian XLM-R model (Kazemi et al., 2021) and a 
threshold of 0.9, which resulted in 20,856 clusters (or groups) of near duplicate messages. Each cluster 
represents a group of text messages with nearly the same meaning. There were 559 clusters with five or 
more unique messages. We hired an Indian journalist with fact-checking experience during the 2019 
Indian general election to annotate each of these clusters for the quality of the clustering and to identify 
clusters with claims that could be fact-checked as defined by Konstantinovskiy et al. (2021), which 
excludes several statement categories such as personal experience and spam. The annotation interface 
presented three examples from each cluster: one with the lowest average distance from all other 
messages in the cluster, one with the highest average distance from all other messages in the cluster, and 
one message chosen randomly. We found 257 clusters (out of the 559, 46%) comprising 2,536 unique 
messages were claims that could be fact-checked. Overall, 173 clusters (1,945 unique messages, 7,131 
total messages) were related to the election, and 84 clusters (591 unique messages, 2,473 total messages) 
were claims unrelated to the election. 

The clusters were generally all high-quality: in 98% of the clusters all three messages made the same 
claim. In 2% of the clusters (11 clusters, 159 unique messages) the three items annotated should not have 
been clustered together. 

There were also 231 clusters that did not have fact-checkable claims. These were usually 
advertising/spam (114 clusters, 1,245 unique messages) or messages specific to the tipline (177 clusters, 
2,957 unique messages). The tipline-specific messages include messages following up on submitted pieces 
of content, requests for more information about the tipline, and requests for fact checks in additional 
languages. 

We took the 257 clusters that were annotated as containing claims and found that 203 contained 
messages in only one language (usually Hindi) while the other clusters contained between two and six 
languages. Languages were detected via CLD3 and were selected when a known language was detected 
and that detection was reported as reliable by CLD3.9 

Within the clusters with election-related claims, the largest cluster was misinformation advising voters 
to ask for a “challenge vote” or “tender vote” if they find they are either not on the voter list or have been 
marked as already voting.10 There were 213 unique messages totaling 2,121 submissions to the tipline 
with this claim across five languages. Other prominent themes within the election-related clusters 
included messages attacking BJP leader Narendra Modi, pro-BJP messages, and messages criticizing Indian 
National Congress Party leader Rahul Gandhi. 

The largest cluster with a non-election claim was misinformation about the tick marks on WhatsApp. 
It claims that three blue tick marks indicate the government had observed the message.11 There were two 
clusters with different variants of this claim totaling 78 unique messages and 1,000 submissions across 
Malayalam and English. 

Of the 2,536 messages in the clusters containing claims, Hindi (47%), English (35%), and Malayalam 
(6%) were the most common languages. Marathi, Telugu, and Tamil each accounted for roughly 2% of the 
messages. This likely reflects both the socio-linguistic characteristics of India as well as the fact that the 
tipline was most heavily advertised in Hindi and English. 

 

 
9 https://github.com/google/cld3 
10 https://archive.is/BWsqR 
11 https://archive.is/WfeRe 

https://github.com/google/cld3
https://archive.is/BWsqR
https://archive.is/WfeRe
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In total, there were 9,604 submissions to the tipline comprised of 2,536 unique messages annotated 
as containing fact-checkable claims (i.e., 7,068 submissions within the set are exact duplicates). It took an 
average of 5 hours (SD = 1.4) for half of the total number of submissions in each of the clusters with claims 
to arrive to the tipline. 90% of the submissions in each of these clusters arrived within an average of 128 
hours (SD = 17). This suggests slightly slower dynamics than those that have been seen with the signing of 
petitions (Margetts et al., 2015) and the sharing of news stories on non-encrypted social media (Bright, 
2016). 
 

URLs 
 
Another common content type in WhatsApp groups and tiplines is URLs. The tipline received 28,370 URLs 
(12,674 unique URLs), which contained URLs from 2,781 unique domains. A list of most frequent domains 
is presented in Table 2. The most prevalent websites submitted to the tipline were social media (YouTube, 
Facebook, Twitter, and Blogger), news outlets (IndiaTimes and DailyHunt), and URL shortening services 
(Bitly and TinyURL). 

 
Table 2. Top 10 domains most shared on the WhatsApp tipline around the Indian general election. 

Domain Total URLs 

YouTube 2,350 

Blogger 2,107 

Bitly 1,636 

Google 1,471 

Facebook 1,192 

RechargeLoot 724 

IndiaTimes 587 

DailyHunt 574 

Twitter 515 

TinyURL 465 
 

Methods  
 
Image similarity. To identify similar images, we used Facebook’s PDQ hashing algorithm and Hamming 
distance. PDQ is a perceptual hashing algorithm that produces a 64-bit binary hash for any image. Small 
changes to images result in only small changes to the hashes and thus allow visually similar images to be 
grouped. This allows, for instance, the same image saved in different file formats to be identified. For this 
paper, images with a Hamming distance of less than 31 were considered to be similar. The same threshold 
was used previously by Reis et al. (2020). Similar images were clustered together using the DBSCAN (Ester 
et al., 1996) algorithm. 

To construct the visual summary of the images shown in Figure 8, we first obtained a 1,000-
dimensional embedding for each image using a pretrained ResNeXt model (Xie et al., 2017). Next, we 
clustered these embeddings using a k-means clustering algorithm and chose k = 20 using the elbow 
method. For each cluster, we picked four randomly sampled images and created a mosaic of the 20 
clusters. 
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Text similarity. To identify similar textual items, we used a multilingual sentence embedding model 
trained for English, Hindi, Bengali, Marathi, Malayalam, Tamil, and Telugu (Kazemi et al., 2021). Kazemi et 
al. (2021) evaluated this model for claim matching using similar data and found applying a cosine similarity 
threshold of 0.9 to pairs of messages resulted in the best performance, with an overall F1 score of 0.73. 
The model performs better on English and Hindi (which are 82% of our data), with an average F1 score of 
0.85. Throughout this paper we used a cosine similarity threshold of 0.9 for matching text items. 
 
Text clustering. We clustered text items using online, single-link hierarchical clustering. Each new message 
arriving to the tipline was compared to all previous messages, and the best match found. If this match was 
above the similarity threshold, then we added the new message to the same cluster as the existing 
message. We applied the same process to the public group messages. To enable quick retrieval, we 
constructed a FAISS (Johnson et al., 2017) index using our Indian XLM-R embeddings of all the public group 
messages. We then queried this index for each tipline message and recorded all matches with a cosine 
similarity score of at least 0.9. We remove any duplicate matches (i.e., cases where two tipline messages 
matched the same public group message) before analyzing the matches. 

 
Data 
 
We used a wide range of data sources in this work including WhatsApp tipline data, social media data 
from WhatsApp public groups and ShareChat, and published fact checks. All the data used pertains to the 
four-month period between March 1, 2019, and June 30, 2019. This period includes the 2019 Indian 
general election, which took place over a period of six weeks in April and May 2019. 
 
Tiplines. In 2019, PROTO led the Checkpoint project using Meedan’s open-source software to operate a 
WhatsApp tipline. PROTO advertised their WhatsApp number asking users to forward any potentially 
misleading content related to the election. They advised that they would be able to check and reply to 
some of the content that they received. Over the course of four months, 157,995 messages were received. 
Of these, 82,676 were unique and consisted of 37,823 text messages, 10,198 links, and 34,655 images. 
We obtained a list of links, text messages, and images along with the timestamps of when they were 
submitted to the tipline. We have no information about the submitting users beyond anonymous ids. 
 
WhatsApp public groups. There are currently over 400 million active WhatsApp users in India. With the 
availability of cheap Internet data and smartphones with WhatsApp pre-installed, the app has become 
ubiquitous. Aside from messaging friends and family, Indians use WhatsApp to participate in political 
discourse (Farooq, 2017). Political parties have taken this opportunity to create thousands of public 
groups to promote their political agendas. These groups have been shown to be quite prevalent, with over 
one in six Indian WhatsApp users belonging to at least one such group (Lokniti, 2018). 

In addition to the image and text items submitted to the tipline, we have data from large “public” 
WhatsApp groups collected by Garimella and Eckles (2020) during the same time period as the tipline ran. 
The dataset was collected by monitoring over 5,000 public WhatsApp groups discussing politics in India. 
For more information on the dataset, please refer to Garimella and Eckles (2020). 
 
ShareChat. ShareChat is an Indian social network that is used by over 100 million users.12 It has features 
similar to Instagram and is primarily multimedia focused (Agarwal et al., 2020). Unlike WhatsApp, 
ShareChat provides global popularity metrics including likes and share count, which allowed us to 

 

 
12 https://sharechat.com/ 

https://sharechat.com/
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construct a proxy for the popularity of the content on social media. ShareChat curates popular hashtags 
based on topics such as politics, entertainment, sports, etc. During the three months of data collection, 
every day, we obtained the popular hashtags related to politics and obtained all the posts containing those 
hashtags. This provides a large sample of images related to politics that were posted on ShareChat during 
the data collection period (March 1 to June 30, 2019). 
 
Fact checks. We also collected fact checks and social media data from the time period in English and Hindi. 
We crawled popular fact-checking websites in India and obtained articles and any tweets linked within 
the articles following the approach of Shahi (2020) and Shahi et al. (2021). Overall, we found 18,174 fact-
check articles in 49 languages from 136 fact checkers from all over the globe. To select fact checks 
concerning the Indian general election, we filtered the data to require that either the fact check be written 
in an Indian language or the fact-checking domain be within India’s country code top-level domain. 

In total, we obtained 3,224 and 2,220 fact checks in English and Hindi respectively. The fact checks 
were of content from various social media platforms, including Twitter. Whenever available, we obtained 
the links to the original tweets that were fact-checked and downloaded these. We obtained 811 tweets 
in total, 653 (182 unique) in English and 158 (63 unique) in Hindi. 

A summary of all the data collected is shown in Table 3. 
 

Table 3. Datasets used in this work. The values shown in parentheses indicate the number of unique 
messages/images. We only collected image data from ShareChat. 

Dataset # Text messages (unique) # Images (unique) 
Public groups 668,829 (445,767) 1.3M (977,246) 

ShareChat - 1.2M (401,137) 

Checkpoint 88,662 (37,823) 48,978 (34,655) 

Fact-check articles 5,444 (5,444) - 

Fact-check tweets 811 (245) - 
Note: M denotes million. 
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